Recent submission on PeerJ (Published)

Phosphorus mobilizing consortium Mammoth P enhances plant growth

Global agricultural productivity may be constrained by the finite and limited supply of phosphorus (P), adding to the challenges in meeting the projected needs of a growing human population in the coming decades. In addition, when P fertilizers are added to soils, they can become bound to soils resulting in low fertilizer efficiency. However, P-mobilizing bacteria could potentially liberate soil-bound P, resulting in a higher plant P uptake and increased yield. Bacteria can mobilize P through several mechanisms, suggesting that consortia of P-bacteria may be more effective than single species. Species diversity can have a synergistic, or non-additive, effect on ecosystem functioning (“the whole is more than the sum of its parts”) but rarely is the microbial community structure intentionally managed to improve plant nutrient uptake. We investigated whether inoculation of soils with a four-species bacterial community developed to mobilize soil P could increase plant productivity. In wheat and turf trials, we found that Mammoth P was able to deliver yields equivalent to those achieved using conventional fertilizer applications. Herbs and fruits showed that the combination of fertilizer with Mammoth P significantly increased productivity – in some cases productivity doubled. Metabolites produced by the Mammoth P consortium led to increased yields in some cases, suggesting that microbial products (produced in the absence of plants) played a role in enhancing plant productivity. Results from these trials indicate substantial potential of Mammoth P to enhance P supply to plants, improving P fertilizer use-efficiency and increasing agricultural productivity.